
May 18, 2015 Rev 1.3
Peter Gustafson
Target link: https://stripe.com/docs/api#intro

API Reference
The Stripe API is organized around REST. Our API has predictable, resource-oriented URLs,
and uses HTTP response codes to indicate API errors. We use built-in HTTP features, like
HTTP authentication and HTTP verbs, which are understood by off-the-shelf HTTP clients. We
support cross-origin resource sharing, allowing you to interact securely with our API from a
client-side web application (though you should never expose your secret API key in any public
website's client-side code). JSON is returned by all API responses, including errors, although
our API libraries convert responses to appropriate language-specific objects.

To make the API as explorable as possible, accounts have test mode and live mode API keys.
There is no "switch" for changing between modes, just use the appropriate key to perform a live
or test transaction. Requests made with test mode credentials never hit the banking networks
and incur no cost.

We send information on new additions and changes to Stripe's API and language libraries to the
API announce mailing list. Be sure to subscribe to stay informed.

The requests in the right sidebar are designed to work as is. The sample requests are
performed using a test mode API key, sk_test_qMgXKP8I1TZDUCSKV7PN5YZQ, linked to your
account under the email address peterdavidgustafson@gmail.com. Only you can see these
account-specific values.

API libraries
Official libraries for the Stripe API are available in several languages. Community-supported
libraries are also available for additional languages.

https://api.stripe.com
Authentication
Authenticate your account when using the API by including your secret API key in the request.
You can manage your API keys in the Dashboard. Your API keys carry many privileges, so be
sure to keep them secret! Do not share your secret API keys in publicly accessible areas such
GitHub, client-side code, and so forth.

To use your API key, assign it to Stripe.api_key. The Ruby library will then automatically send
this key in each request.

All API requests must be made over HTTPS. Calls made over plain HTTP will fail. API requests
without authentication will also fail.

https://stripe.com/docs/api#intro

require "stripe"
Stripe.api_key = "sk_test_qMgXKP8I1TZDUCSKV7PN5YZQ"
You can also set a per-request key like in the example below. This is often useful for Connect
applications that use multiple API keys during the lifetime of a process.

Authentication is transparently handled for you in subsequent method calls on the returned
object.

Stripe::Charge.retrieve(
 "ch_1BqnFrBMHHbTYGW2twbHvJrO",
 :api_key => "sk_test_qMgXKP8I1TZDUCSKV7PN5YZQ"
)
Your test API key is included in all the examples on this page, so you can test any example right
away. Only you can see this value.

Errors
Stripe uses conventional HTTP response codes to indicate the success or failure of an API
request. In general, codes in the 2xx range indicate success, codes in the 4xx range indicate an
error that failed given the information provided (e.g., a required parameter was omitted, a
charge failed, etc.), and codes in the 5xx range indicate an error with Stripe's servers (these are
rare).

Not all errors map cleanly onto HTTP response codes, however. When a request is valid but
does not complete successfully (e.g., a card is declined), we return a 402 error code. To
understand why a card is declined, refer to the list of codes in the documentation.

ATTRIBUTES
 type
The type of error returned. Can be: api_connection_error, api_error, authentication_error,
card_error, idempotency_error invalid_request_error, or rate_limit_error.

 charge
The ID of the failed charge.

 message
optional
A human-readable message providing more details about the error. For card errors, these
messages can be shown to your users.

 code
optional

For card errors, a short string from among those listed on the right describing the kind of card
error that occurred.

 decline_code
optional
For card errors resulting from a card issuer decline, a short string indicating the card issuer's
reason for the decline if they provide one.

 param
optional
The parameter the error relates to if the error is parameter-specific. You can use this to display
a message near the correct form field, for example.

HTTP status code summary
200 - OK Everything worked as expected.
400 - Bad Request The request was unacceptable, often due to missing a required
parameter.
401 - Unauthorized No valid API key provided.
402 - Request Failed The parameters were valid but the request failed.
404 - Not Found The requested resource doesn't exist.
409 - Conflict The request conflicts with another request (perhaps due to using the same
idempotent key).
429 - Too Many Requests Too many requests hit the API too quickly. We recommend an
exponential backoff of your requests.
500, 502, 503, 504 - Server Errors Something went wrong on Stripe's end. (These are rare.)
Errors
TYPES
api_connection_error Failure to connect to Stripe's API.
api_error API errors cover any other type of problem (e.g., a temporary problem with
Stripe's servers) and are extremely uncommon.
authentication_error Failure to properly authenticate yourself in the request.
card_error Card errors are the most common type of error you should expect to handle.
They result when the user enters a card that can't be charged for some reason.
idempotency_error Idempotency errors occur when an Idempotency-Key is re-used on a
request that does not match the API endpoint and parameters of the first.
invalid_request_error Invalid request errors arise when your request has invalid parameters.
rate_limit_error Too many requests hit the API too quickly.
validation_error Errors triggered by our client-side libraries when failing to validate fields
(e.g., when a card number or expiration date is invalid or incomplete).
CODES
invalid_number The card number is not a valid credit card number.
invalid_expiry_month The card's expiration month is invalid.
invalid_expiry_year The card's expiration year is invalid.

invalid_cvc The card's security code is invalid.
invalid_swipe_data The card's swipe data is invalid.
incorrect_number The card number is incorrect.
expired_card The card has expired.
incorrect_cvc The card's security code is incorrect.
incorrect_zip The card's zip code failed validation.
card_declined The card was declined.
missing There is no card on a customer that is being charged.
processing_error An error occurred while processing the card.
Radar provides built-in rules for CVC and ZIP validation that can be enabled/disabled in the
Dashboard.
Handling errors
Our API libraries raise exceptions for many reasons, such as a failed charge, invalid
parameters, authentication errors, and network unavailability. We recommend writing code that
gracefully handles all possible API exceptions.

begin
 # Use Stripe's library to make requests...
rescue Stripe::CardError => e
 # Since it's a decline, Stripe::CardError will be caught
 body = e.json_body
 err = body[:error]

 puts "Status is: #{e.http_status}"
 puts "Type is: #{err[:type]}"
 puts "Charge ID is: #{err[:charge]}"
 # The following fields are optional
 puts "Code is: #{err[:code]}" if err[:code]
 puts "Decline code is: #{err[:decline_code]}" if err[:decline_code]
 puts "Param is: #{err[:param]}" if err[:param]
 puts "Message is: #{err[:message]}" if err[:message]
rescue Stripe::RateLimitError => e
 # Too many requests made to the API too quickly
rescue Stripe::InvalidRequestError => e
 # Invalid parameters were supplied to Stripe's API
rescue Stripe::AuthenticationError => e
 # Authentication with Stripe's API failed
 # (maybe you changed API keys recently)
rescue Stripe::APIConnectionError => e
 # Network communication with Stripe failed
rescue Stripe::StripeError => e
 # Display a very generic error to the user, and maybe send
 # yourself an email

rescue => e
 # Something else happened, completely unrelated to Stripe
end
Expanding Objects
Many objects contain the ID of a related object in their response properties. For example, a
Charge may have an associated Customer ID. Those objects can be expanded inline with the
expand request parameter. Objects that can be expanded are noted in this documentation. This
parameter is available on all API requests, and applies to the response of that request only.

You can nest expand requests with the dot property. For example, requesting invoice.customer
on a charge will expand the invoice property into a full Invoice object, and will then expand the
customer property on that invoice into a full Customer object.

You can expand multiple objects at once by identifying multiple items in the expand array.

require "stripe"
Stripe.api_key = "sk_test_qMgXKP8I1TZDUCSKV7PN5YZQ"

Stripe::Charge.retrieve({ :id => "ch_1BqnFsBMHHbTYGW2REkSnJGd", :expand => ['customer']
})
Idempotent Requests
The API supports idempotency for safely retrying requests without accidentally performing the
same operation twice. For example, if a request to create a charge fails due to a network
connection error, you can retry the request with the same idempotency key to guarantee that
only a single charge is created.

GET and DELETE requests are idempotent by definition, meaning that the same backend work
will occur no matter how many times the same request is issued. You shouldn't send an
idempotency key with these verbs because it will have no effect.

To perform an idempotent request, provide an additional idempotency_key element to the
request options.

How you create unique keys is up to you, but we suggest using V4 UUIDs or another
appropriately random string. We'll always send back the same response for requests made with
the same key, and keys can't be reused with different request parameters. Keys expire after 24
hours.

require "stripe"
Stripe.api_key = "sk_test_qMgXKP8I1TZDUCSKV7PN5YZQ"

Stripe::Charge.create({
 :amount => 2000,

 :currency => "usd",
 :source => "tok_visa", # obtained with Stripe.js
 :description => "Charge for andrew.white@example.com"
}, {
 :idempotency_key => "mGWExZMddBG2uxXK"
})
Metadata
Updatable Stripe objects—including Account, Charge, Customer, Refund, Subscription, and
Transfer—have a metadata parameter. You can use this parameter to attach key-value data to
these Stripe objects.

Metadata is useful for storing additional, structured information on an object. As an example,
you could store your user's full name and corresponding unique identifier from your system on a
Stripe Customer object. Metadata is not used by Stripe (e.g., to authorize or decline a charge),
and won't be seen by your users unless you choose to show it to them.

Some of the objects listed above also support a description parameter. You can use the
description parameter to annotate a charge, for example, with a human-readable description,
such as "2 shirts for test@example.com". Unlike metadata, description is a single string, and
your users may see it (e.g., in email receipts Stripe sends on your behalf).

Note: You can specify up to 20 keys, with key names up to 40 characters long and values up to
500 characters long.

SAMPLE METADATA USE CASES
Link IDs
Attach your system's unique IDs to a Stripe object for easy lookups. Add your order number to a
charge, your user ID to a customer or recipient, or a unique receipt number to a transfer, for
example.

Refund papertrails
Store information about why a refund was created, and by whom.

Customer details
Annotate a customer by storing the customer's phone number for your later use.

 require "stripe"
Stripe.api_key = "sk_test_qMgXKP8I1TZDUCSKV7PN5YZQ"

Stripe::Charge.create(
 :amount => 2000,
 :currency => "usd",
 :source => "tok_amex", # obtained with Stripe.js

 :metadata => {'order_id' => '6735'}
)
 #<Stripe::Charge id=ch_1BqnFsBMHHbTYGW2REkSnJGd 0x00000a> JSON: {
 "id": "ch_1BqnFsBMHHbTYGW2REkSnJGd",
 "object": "charge",
 "amount": 100,
 "amount_refunded": 0,
 "application": null,
 "application_fee": null,
 "balance_transaction": "txn_1BqnFsBMHHbTYGW2q5vudPsg",
 "captured": false,
 "created": 1517511472,
 "currency": "usd",
 "customer": null,
 "description": "My First Test Charge (created for API docs)",
 "destination": null,
 "dispute": null,
 "failure_code": null,
 "failure_message": null,
 "fraud_details": {
 },
 "invoice": null,
 "livemode": false,
 "metadata": {
 "order_id": "6735"
 },
 "on_behalf_of": null,
 "order": null,
 "outcome": null,
 "paid": true,
 "receipt_email": null,
 "receipt_number": null,
 "refunded": false,
 "refunds": {
 "object": "list",
 "data": [

],
 "has_more": false,
 "total_count": 0,
 "url": "/v1/charges/ch_1BqnFsBMHHbTYGW2REkSnJGd/refunds"
 },
 "review": null,

 "shipping": null,
 "source": {
 "id": "card_19QnerBMHHbTYGW2nxgDxBzR",
 "object": "card",
 "address_city": null,
 "address_country": null,
 "address_line1": null,
 "address_line1_check": null,
 "address_line2": null,
 "address_state": null,
 "address_zip": null,
 "address_zip_check": null,
 "brand": "Visa",
 "country": "US",
 "customer": null,
 "cvc_check": null,
 "dynamic_last4": null,
 "exp_month": 8,
 "exp_year": 2017,
 "fingerprint": "DuWe4kcGPrRJnhC5",
 "funding": "credit",
 "last4": "4242",
 "metadata": {
 },
 "name": null,
 "tokenization_method": null
 },
 "source_transfer": null,
 "statement_descriptor": null,
 "status": "succeeded",
 "transfer_group": null
}
Pagination
All top-level API resources have support for bulk fetches via "list" API methods. For instance you
can list charges, list customers, and list invoices. These list API methods share a common
structure, taking at least these three parameters: limit, starting_after, and ending_before.

Stripe utilizes cursor-based pagination via the starting_after and ending_before parameters.
Both take an existing object ID value (see below) and return objects in reverse chronological
order. The ending_before parameter returns objects listed before the named object. The
starting_after parameter returns objects listed after the named object. If both parameters are
provided, only ending_before is used.

ARGUMENTS
 limit
optional, default is 10
A limit on the number of objects to be returned, between 1 and 100.

 starting_after
optional
A cursor for use in pagination. starting_after is an object ID that defines your place in the list.
For instance, if you make a list request and receive 100 objects, ending with obj_foo, your
subsequent call can include starting_after=obj_foo in order to fetch the next page of the list.

 ending_before
optional
A cursor for use in pagination. ending_before is an object ID that defines your place in the list.
For instance, if you make a list request and receive 100 objects, starting with obj_bar, your
subsequent call can include ending_before=obj_bar in order to fetch the previous page of the
list.

LIST RESPONSE FORMAT
 object
string, value is "list"
A string describing the object type returned.

 data
array
An array containing the actual response elements, paginated by any request parameters.

 has_more
boolean
Whether or not there are more elements available after this set. If false, this set comprises the
end of the list.

 url
string
The URL for accessing this list.

 require "stripe"
Stripe.api_key = "sk_test_qMgXKP8I1TZDUCSKV7PN5YZQ"

Stripe::Customer.list(limit: 3)
 #<Stripe::ListObject:0x3fe634d74498> JSON: {
 "object": "list",
 "url": "/v1/customers",

 "has_more": false,
 "data": [
 #<Stripe::Customer id=cus_CFHpNCc0DP4eSv 0x00000a> JSON: {
 "id": "cus_CFHpNCc0DP4eSv",
 "object": "customer",
 "account_balance": 0,
 "created": 1517511472,
 "currency": "usd",
 "default_source": null,
 "delinquent": false,
 "description": null,
 "discount": null,
 "email": null,
 "livemode": false,
 "metadata": {
 },
 "shipping": null,
 "sources": {
 "object": "list",
 "data": [

],
 "has_more": false,
 "total_count": 0,
 "url": "/v1/customers/cus_CFHpNCc0DP4eSv/sources"
 },
 "subscriptions": {
 "object": "list",
 "data": [

],
 "has_more": false,
 "total_count": 0,
 "url": "/v1/customers/cus_CFHpNCc0DP4eSv/subscriptions"
 }
 },
 #<Stripe::Customer[...] ...>,
 #<Stripe::Customer[...] ...>
]
}
Auto-pagination
Most of our libraries support auto-pagination. This feature easily handles fetching large lists of
resources without having to manually paginate results and perform subsequent requests.

To use the auto-pagination feature in Ruby, simply issue an initial "list" call with the parameters
you need, then call auto_paging_each on the returned list object to iterate over all objects
matching your initial parameters.

require "stripe"
Stripe.api_key = "sk_test_qMgXKP8I1TZDUCSKV7PN5YZQ"

customers = Stripe::Customer.all(:limit => 3)
customers.auto_paging_each do |customer|
 # Do something with customer
end
Request IDs
Each API request has an associated request identifier. You can find this value in the response
headers, under Request-Id. You can also find request identifiers in the URLs of individual
request logs in your Dashboard. If you need to contact us about a specific request, providing the
request identifier will ensure the fastest possible resolution.

Versioning
When we make backwards-incompatible changes to the API, we release new, dated versions.
You are running the current version of the API, 2018-01-23. Read our API upgrades guide to
see our API changelog and to learn more about backwards compatibility.

All requests will use your account API settings, unless you override the API version. The
changelog lists every available version. Note that events generated by API requests will always
be structured according to your account API version.

To override the API version, assign the version to the Stripe.api_version property.

You can visit your Dashboard to upgrade your API version. As a precaution, use API versioning
to test a new API version before committing to an upgrade.

require "stripe"
Stripe.api_key = "sk_test_qMgXKP8I1TZDUCSKV7PN5YZQ"
Stripe.api_version = "2018-01-23"
Balance
This is an object representing your Stripe balance. You can retrieve it to see the balance
currently on your Stripe account.

You can also retrieve a list of the balance history, which contains a list of transactions that
contributed to the balance (e.g., charges, payouts, and so forth).

The available and pending amounts for each currency are broken down further by payment
source types.

The balance object
ATTRIBUTES
 object
string , value is "balance"
String representing the object’s type. Objects of the same type share the same value.

 available
array
Funds that are available to be paid out automatically by Stripe or explicitly via the transfers API.
The available balance for each currency and payment type can be found in the source_types
property.

 connect_reserved
array
Funds held due to negative balances on connected Custom accounts. The connect reserve
balance for each currency and payment type can be found in the source_types property.

 livemode
boolean
Flag indicating whether the object exists in live mode or test mode.

 pending
array
Funds that are not available in the balance yet, due to the 7-day rolling pay cycle. The pending
balance for each currency and payment type can be found in the source_types property.

#<Stripe::Balance 0x00000a> JSON: {
 "object": "balance",
 "available": [
 {
 "currency": "usd",
 "amount": 0,
 "source_types": {
 "card": 0
 }
 }
],
 "livemode": false,
 "pending": [
 {

 "currency": "usd",
 "amount": 0,
 "source_types": {
 "card": 0
 }
 }
]
}
The balance_transaction object
ATTRIBUTES
 id
string
Unique identifier for the object.

 object
string , value is "balance_transaction"
String representing the object’s type. Objects of the same type share the same value.

 amount
integer
Gross amount of the transaction, in cents.

 available_on
timestamp
The date the transaction’s net funds will become available in the Stripe balance.

 created
timestamp
Time at which the object was created. Measured in seconds since the Unix epoch.

 currency
currency
Three-letter ISO currency code, in lowercase. Must be a supported currency.

 description
string
An arbitrary string attached to the object. Often useful for displaying to users.

 exchange_rate
decimal
 fee
integer
Fees (in cents) paid for this transaction.

 fee_details
list
Detailed breakdown of fees (in cents) paid for this transaction.

 net
integer
Net amount of the transaction, in cents.

 source
string
The Stripe object this transaction is related to.

 status
string
If the transaction’s net funds are available in the Stripe balance yet. Either available or pending.

 type
string
Transaction type: adjustment, application_fee, application_fee_refund, charge, payment,
payment_failure_refund, payment_refund, refund, transfer, transfer_refund, payout,
payout_cancel, payout_failure, validation, or stripe_fee.

#<Stripe::BalanceTransaction id=txn_1BqnFsBMHHbTYGW2IlgXof07 0x00000a> JSON: {
 "id": "txn_1BqnFsBMHHbTYGW2IlgXof07",
 "object": "balance_transaction",
 "amount": 100,
 "available_on": 1517511472,
 "created": 1517511472,
 "currency": "usd",
 "description": null,
 "exchange_rate": null,
 "fee": 0,
 "fee_details": [

],
 "net": 100,
 "source": "ch_1BqnFsBMHHbTYGW2cg6LysET",
 "status": "pending",
 "type": "charge"
}
Retrieve balance

Retrieves the current account balance, based on the authentication that was used to make the
request.

ARGUMENTS
No arguments…
Returns
Returns a balance object for the account authenticated as.

 require "stripe"
Stripe.api_key = "sk_test_qMgXKP8I1TZDUCSKV7PN5YZQ"

Stripe::Balance.retrieve()
 #<Stripe::Balance 0x00000a> JSON: {
 "object": "balance",
 "available": [
 {
 "currency": "usd",
 "amount": 0,
 "source_types": {
 "card": 0
 }
 }
],
 "livemode": false,
 "pending": [
 {
 "currency": "usd",
 "amount": 0,
 "source_types": {
 "card": 0
 }
 }
]
}
Retrieve a balance transaction
Retrieves the balance transaction with the given ID.

ARGUMENTS
 id
REQUIRED
The ID of the desired balance transaction (as found on any API object that affects the balance,
e.g., a charge or transfer).

