
Peter Gustafson
Interactive Brokers: Connectivity
April 3, 2024

Connectivity

A socket connection between the API client application
and TWS is established with the
[IBApi.EClientSocket.eConnect](https://
interactivebrokers.github.io/tws-api/
classIBApi_1_1EClientSocket.html#a315a7f7a34afc504d84c4
f0ca462d924) function. TWS acts as a server to receive
requests from the API application (the client) and
responds by taking appropriate actions.

The first step is for the API client to initiate a
connection to TWS on a socket port where TWS is already
listening. It is possible to have multiple TWS
instances running on the same computer if each is
configured with a different API socket port number.

Also, each TWS session can receive up to **32
different client applications** simultaneously. The
client ID field specified in the API connection is
used to distinguish different API clients.

Establishing an API connection

Once our two main objects have been created, EWrapper
and ESocketClient, the client application can connect
via the [IBApi.EClientSocket](https://
interactivebrokers.github.io/tws-api/
classIBApi_1_1EClientSocket.html) object:

- clientSocket.eConnect("127.0.0.1", 7497, 0);

eConnect starts by requesting from the operating system
that a TCP socket be opened to the specified IP address

and socket port. If the socket cannot be opened, the
operating system (not TWS) returns an error which is
received by the API client as error code 502 to
[IBApi.EWrapper.error](https://
interactivebrokers.github.io/tws-api/
interfaceIBApi_1_1EWrapper.html#a7dfc221702ca6519560921
3c984729b8 "Handles errors generated within the API
itself. If an exception is thrown within the API code
it will...")

(**Note:** since this error is not generated by TWS it
is not captured in TWS log files).

Most commonly error 502 will indicate that TWS is not
running with the API enabled, or it is listening for
connections on a different socket port. If connecting
across a network, the error can also occur if there is
a firewall or antivirus program blocking connections,
or if the router's IP address is not listed in the
"Trusted IPs" in TWS.

 - After the socket has been opened, there must be an
initial handshake in which information is exchanged
about the highest version supported by TWS and the API.
 - This is important because API messages can have
different lengths and fields in different versions and
it is necessary to have a version number to interpret
received messages correctly.

- For this reason it is important that the main
EReader object is not created until after a connection
has been established.
- The initial connection results in a negotiated common
version between TWS and the API client which will be
needed by the EReader thread in interpreting subsequent
messages.

After the highest version number which can be used for
communication is established, TWS will return certain
pieces of data that correspond specifically to the
logged-in TWS user's session.

This includes (1) the account number(s) accessible in
this TWS session, (2) the next valid order identifier
(ID), and (3) the time of connection. In the most
common mode of operation the EClient.AsyncEConnect
field is set to false and the initial handshake is
taken to completion immediately after the socket
connection is established. TWS will then immediately
provides the API client with this information.

Important: The **IBApi.EWrapper.nextValidID**
callback is commonly used to indicate that the
connection is completed and other messages can be sent
from the API client to TWS. There is the possibility
that function calls made prior to this time could be
dropped by TWS.

There is an alternative, deprecated mode of connection
used in special cases in which the variable
A`syncEconnect` is set to true, and the call to
startAPI is only called from the `connectAck()`
function. All IB samples use the mode `AsyncEconnect =
False`.

The EReader Thread

API programs always have at least two threads of
execution. One thread is used for sending messages to
TWS, and another thread is used for reading returned
messages.

The second thread uses the API EReader class to read
from the socket and add messages to a queue. Every time
a new message is added to the message queue, a
notification flag is triggered to let other threads now
that there is a message waiting to be processed.

In the two-thread design of an API program, the message
queue is also processed by the first thread. In a
three-thread design, an additional thread is created to
perform this task.

The thread responsible for the message queue will
decode messages and invoke the appropriate functions in
EWrapper. The two-threaded design is used in the IB
Python sample Program.py and the C++ sample
TestCppClient, while the 'Testbed' samples in the other
languages use a three-threaded design. Commonly in a
Python asynchronous network application, the [asyncio
module](https://docs.python.org/3/library/asyncio.ht)
will be used to create a more sequential looking code
design.

The class which has functionality for reading and
parsing raw messages from TWS is the [IBApi.EReader]
(https://interactivebrokers.github.io/tws-api/
classIBApi_1_1EReader.html) class.

- //Create a reader to consume messages from the TWS.
The EReader will consume the incoming messages and put
them in a queue

 > var reader = new EReader(clientSocket,
readerSignal);
 >
 > reader.Start();
 >
 > //Once the messages are in the queue, an
additional thread can be
 > created to fetch them
 >
 > new Thread(() => { while
(clientSocket.IsConnected()) {
 > readerSignal.waitForSignal();
reader.processMsgs(); } }) {
 > IsBackground = true }.Start();

Now it is time to revisit the role of
[IBApi.EReaderSignal](https://
interactivebrokers.github.io/tws-api/

interfaceIBApi_1_1EReaderSignal.html) initially
introduced in [The EClientSocket Class](https://
interactivebrokers.github.io/tws-api/
client_wrapper.html#client_socket). As mentioned in the
previous paragraph, after the EReader thread places a
message in the queue, a notification is issued to make
known that a message is ready for processing. In the
(C++, C#/.NET, Java) APIs, this is done via the
[IBApi.EReaderSignal](https://
interactivebrokers.github.io/tws-api/
interfaceIBApi_1_1EReaderSignal.html) object we
initiated within the [IBApi.EWrapper](https://
interactivebrokers.github.io/tws-api/
interfaceIBApi_1_1EWrapper.html)'s implementer. In the
Python API, it is handled automatically by the [Queue
class](https://docs.python.org/3/library/queue.html).

The client application is now ready to work with the
Trader Workstation! At the completion of the
connection, the API program will start receiving events
such as [IBApi.EWrapper.nextValidId](https://
interactivebrokers.github.io/tws-api/
interfaceIBApi_1_1EWrapper.html#a09c07727efd297e438690a
b42838d332) and [IBApi.EWrapper.managedAccounts]
(https://interactivebrokers.github.io/tws-api/
interfaceIBApi_1_1EWrapper.html#abd7e561f313bcc4c860074
906199a46c). In TWS (_not IB Gateway_) if there is an
active network connection, there will also immediately
be callbacks to [IBApi::EWrapper::error](https://
interactivebrokers.github.io/tws-api/
interfaceIBApi_1_1EWrapper.html#a7dfc221702ca6519560921
3c984729b8 "Handles errors generated within the API
itself. If an exception is thrown within the API code
it will...") with errorId as -1 and
errorCode=_2104_,_2106_, errorMsg = "Market Data Server
is ok" to indicate there is an active connection to the
IB market data server. Callbacks to
[IBApi::EWrapper::error](https://
interactivebrokers.github.io/tws-api/
interfaceIBApi_1_1EWrapper.html#a7dfc221702ca6519560921
3c984729b8 "Handles errors generated within the API

itself. If an exception is thrown within the API code
it will...") with errorId as -1 do not represent true
'errors' but only notifications that a connection has
been made successfully to the IB market data farms.

IB Gateway by contrast will not make connections to
market data farms until a request is made by the IB
client. Until this time the connection indicator in the
IB Gateway GUI will show a yellow color of 'inactive'
rather than an 'active' green indication.

When initially making requests from an API application
it is important that the verifies that a response is
received rather than proceeding assuming that the
network connection is ok and the subscription request
(portfolio updates, account information, etc) was made
successfully.

Accepting an API connection from TWS

For security reasons, by default the API is not
configured to automatically accept connection requests
from API applications. After a connection attempt, a
dialogue will appear in TWS asking the user to manually
confirm that a connection can be made:

![conn_prompt.png](https://
interactivebrokers.github.io/tws-api/conn_prompt.png)

To prevent the TWS from asking the end user to accept
the connection, it is possible to configure it to
automatically accept the connection from a trusted IP
address and/or the local machine. This can easily be
done via the TWS API settings:

![tws_allow_connections.png](https://
interactivebrokers.github.io/tws-api/
tws_allow_connections.png)

Note: you have to make sure the connection has
been fully established before attempting to do any

requests to the TWS. Failure to do so will result in
the TWS closing the connection. Typically this can be
done by waiting for a callback from an event and the
end of the initial connection handshake, such as
[IBApi.EWrapper.nextValidId](https://
interactivebrokers.github.io/tws-api/
interfaceIBApi_1_1EWrapper.html#a09c07727efd297e438690a
b42838d332) or [IBApi.EWrapper.managedAccounts]
(https://interactivebrokers.github.io/tws-api/
interfaceIBApi_1_1EWrapper.html#abd7e561f313bcc4c860074
906199a46c).

In rare cases in which IB Gateway or TWS has a
momentarily delay in establishing connecting to the IB
servers, messages sent immediately after receiving the
nextValidId could be dropped and would need to be
resent. If the API client has not receive the expected
callbacks from issued requests, it should not proceed
assumming the connection is ok.

Broken API socket connection

If there is a problem with the socket connection
between TWS and the API client, for instance if TWS
suddenly closes, this will trigger an exception in the
EReader thread which is reading from the socket. This
exception will also occur if an API client attempts to
connect with a client ID that is already in use.

The socket EOF is handled slightly differently in
different API languages. For instance in Java, it is
caught and sent to the client application to
[IBApi::EWrapper::error](https://
interactivebrokers.github.io/tws-api/
interfaceIBApi_1_1EWrapper.html#a7dfc221702ca6519560921
3c984729b8 "Handles errors generated within the API
itself. If an exception is thrown within the API code
it will...") with errorCode 507: "Bad Message". In C#
it is caught and sent to [IBApi::EWrapper::error]
(https://interactivebrokers.github.io/tws-api/
interfaceIBApi_1_1EWrapper.html#a7dfc221702ca6519560921

3c984729b8 "Handles errors generated within the API
itself. If an exception is thrown within the API code
it will...") with errorCode -1. The client application
needs to handle this error message and use it to
indicate that an exception has been thrown in the
socket connection. Associated functions such as
[IBApi::EWrapper::connectionClosed](https://
interactivebrokers.github.io/tws-api/
interfaceIBApi_1_1EWrapper.html#a9b0f099dc421e5a48ec290
cab67a8ad1 "Callback to indicate the API connection has
closed. Following a API <-> TWS broken socket
connection...") and [IBApi::EClient::IsConnected]
(https://interactivebrokers.github.io/tws-api/
classIBApi_1_1EClient.html#ab8e2702adca8f47228f9754f496
3455d "Indicates whether the API-TWS connection has
been closed. Note: This function is not automatically
in...") functions are not called automatically by the
API code but need to be handled at the API client-
level*.

