
Peter Gustafson
writing sample
Stripe Sep 18, 2013

Update a card | Stripe API Reference
Updates a specified card for a given customer.

Parameters

* City/District/Suburb/Town/Village.

* Billing address country, if provided when creating card.

* Address line 1 (Street address/PO Box/Company name).

* Address line 2 (Apartment/Suite/Unit/Building).

* State/County/Province/Region.

* ZIP or postal code.

* Two digit number representing the card’s expiration month.

* Four digit number representing the card’s expiration year.

* Set of [key-value pairs](https://docs.stripe.com/api/metadata)
that you can attach to an object. This can be useful for storing
additional information about the object in a structured format.
Individual keys can be unset by posting an empty value to them. All
keys can be unset by posting an empty value to `metadata`.

* Cardholder name.

POST /v1/customers/:id/sources/:id

```

curl https://api.stripe.com/v1/customers/acct_1032D82eZvKYlo2C/
sources/card_1NBLeN2eZvKYlo2CIq1o7Pzs \
  -u "sk_test_zzPhAh8...I4JDtzTNnhGlsk_test_zzPhAh8sZkhmI4JDtzTNnhGl:" 
\
  -d name="Jenny Rosen"
```

```

{
  "id": "card_1NBLeN2eZvKYlo2CIq1o7Pzs",



  "object": "card",
  "address_city": null,
  "address_country": null,
  "address_line1": null,
  "address_line1_check": null,
  "address_line2": null,
  "address_state": null,
  "address_zip": null,
  "address_zip_check": null,
  "brand": "Visa",
  "country": "US",
  "cvc_check": "pass",
  "dynamic_last4": null,
  "exp_month": 8,
  "exp_year": 2024,
  "fingerprint": "Xt5EWLLDS7FJjR1c",
  "funding": "credit",
  "last4": "4242",
  "metadata": {},
  "name": "Jenny Rosen",
  "redaction": null,
  "tokenization_method": null,
  "wallet": null,
  "account": "acct_1032D82eZvKYlo2C"
}
```

You can always see the 10 most recent cards directly on a customer;
this method lets you retrieve details about a specific card stored on
the customer.

Parameters

No parameters.

Returns

Returns the `Card` object.

GET /v1/customers/:id/cards/:id

```

curl https://api.stripe.com/v1/customers/cus_NhD8HD2bY8dP3V/cards/
card_1MvoiELkdIwHu7ixOeFGbN9D \
  -u "sk_test_zzPhAh8...I4JDtzTNnhGlsk_test_zzPhAh8sZkhmI4JDtzTNnhGl:"
```



```

{
  "id": "card_1MvoiELkdIwHu7ixOeFGbN9D",
  "object": "card",
  "address_city": null,
  "address_country": null,
  "address_line1": null,
  "address_line1_check": null,
  "address_line2": null,
  "address_state": null,
  "address_zip": null,
  "address_zip_check": null,
  "brand": "Visa",
  "country": "US",
  "customer": "cus_NhD8HD2bY8dP3V",
  "cvc_check": null,
  "dynamic_last4": null,
  "exp_month": 4,
  "exp_year": 2024,
  "fingerprint": "mToisGZ01V71BCos",
  "funding": "credit",
  "last4": "4242",
  "metadata": {},
  "name": null,
  "tokenization_method": null,
  "wallet": null
}
```

You can see a list of the cards belonging to a customer. Note that the
10 most recent sources are always available on the `Customer` object.
If you need more than those 10, you can use this API method and the
`limit` and `starting_after` parameters to page through additional
cards.

Parameters

No parameters.

More parameters

Returns

Returns a list of the cards stored on the customer.

GET /v1/customers/:id/cards

```



curl -G https://api.stripe.com/v1/customers/cus_NhD8HD2bY8dP3V/cards \
  -u "sk_test_zzPhAh8...I4JDtzTNnhGlsk_test_zzPhAh8sZkhmI4JDtzTNnhGl:" 
\
  -d limit=3
```

```

{
  "object": "list",
  "url": "/v1/customers/cus_NhD8HD2bY8dP3V/cards",
  "has_more": false,
  "data": [
    {
      "id": "card_1MvoiELkdIwHu7ixOeFGbN9D",
      "object": "card",
      "address_city": null,
      "address_country": null,
      "address_line1": null,
      "address_line1_check": null,
      "address_line2": null,
      "address_state": null,
      "address_zip": null,
      "address_zip_check": null,
      "brand": "Visa",
      "country": "US",
      "customer": "cus_NhD8HD2bY8dP3V",
      "cvc_check": null,
      "dynamic_last4": null,
      "exp_month": 4,
      "exp_year": 2024,
      "fingerprint": "mToisGZ01V71BCos",
      "funding": "credit",
      "last4": "4242",
      "metadata": {},
      "name": null,
      "tokenization_method": null,
      "wallet": null
    }
    {...}
    {...}
  ],
}
```

You can delete cards from a customer. If you delete a card that is
currently the default source, then the most recently added source will

become the new default. If you delete a card that is the last
remaining source on the customer, then the default_source attribute
will become null.

For recipients: if you delete the default card, then the most recently
added card will become the new default. If you delete the last
remaining card on a recipient, then the default_card attribute will
become null.

Note that for cards belonging to customers, you might want to prevent
customers on paid subscriptions from deleting all cards on file, so
that there is at least one default card for the next invoice payment
attempt.

Parameters

No parameters.

DELETE /v1/customers/:id/sources/:id

```

curl -X DELETE https://api.stripe.com/v1/customers/
acct_1032D82eZvKYlo2C/sources/card_1NGTaT2eZvKYlo2CZWSctn5n \
  -u "sk_test_zzPhAh8...I4JDtzTNnhGlsk_test_zzPhAh8sZkhmI4JDtzTNnhGl:"
```

```

{
  "id": "card_1NGTaT2eZvKYlo2CZWSctn5n",
  "object": "card",
  "deleted": true
}
```

`Source` objects allow you to accept a variety of payment methods.
They represent a customer’s payment instrument, and can be used with
the Stripe API just like a `Card` object: once chargeable, they can be
charged, or can be attached to customers.

Stripe doesn’t recommend using the deprecated [Sources API](https://
docs.stripe.com/api/sources). We recommend that you adopt the
[PaymentMethods API](https://docs.stripe.com/api/payment_methods).
This newer API provides access to our latest features and payment
method types.

Related guides: [Sources API](https://docs.stripe.com/sources) and

[Sources & Customers](https://docs.stripe.com/sources/customers).

Prices define the unit cost, currency, and (optional) billing cycle
for both recurring and one-time purchases of products. [Products]
(#products) help you track inventory or provisioning, and prices help
you track payment terms. Different physical goods or levels of service
should be represented by products, and pricing options should be
represented by prices. This approach lets you change prices without
having to change your provisioning scheme.

For example, you might have a single “gold” product that has prices
for $10/month, $100/year, and €9 once.

Related guides: [Set up a subscription](https://docs.stripe.com/
billing/subscriptions/set-up-subscription), [create an invoice]
(https://docs.stripe.com/billing/invoices/create), and more about
[products and prices](https://docs.stripe.com/products-prices/
overview).

A Promotion Code represents a customer-redeemable code for a [coupon]
(#coupons). It can be used to create multiple codes for a single
coupon.

[Tax codes](https://stripe.com/docs/tax/tax-categories) classify goods
and services for tax purposes.

Shipping rates describe the price of shipping presented to your
customers and applied to a purchase. For more information, see [Charge
for shipping](https://docs.stripe.com/payments/during-payment/charge-
shipping).

A Checkout Session represents your customer’s session as they pay for
one-time purchases or subscriptions through [Checkout](https://
docs.stripe.com/payments/checkout) or [Payment Links](https://
docs.stripe.com/payments/payment-links). We recommend creating a new
Session each time your customer attempts to pay.

Once payment is successful, the Checkout Session will contain a
reference to the [Customer](https://docs.stripe.com/api/customers),
and either the successful [PaymentIntent](https://docs.stripe.com/api/
payment_intents) or an active [Subscription](https://docs.stripe.com/
api/subscriptions).

You can create a Checkout Session on your server and redirect to its
URL to begin Checkout.

Related guide: [Checkout quickstart](https://docs.stripe.com/checkout/
quickstart)

A payment link is a shareable URL that will take your customers to a

hosted payment page. A payment link can be shared and used multiple
times.

When a customer opens a payment link it will open a new [checkout
session](https://docs.stripe.com/api/checkout/sessions) to render the
payment page. You can use [checkout session events](https://
docs.stripe.com/api/events/types#event_types-
checkout.session.completed) to track payments through payment links.

Related guide: [Payment Links API](https://docs.stripe.com/payment-
links)

Issue a credit note to adjust an invoice’s amount after the invoice is
finalized.

Related guide: [Credit notes](https://docs.stripe.com/billing/
invoices/credit-notes)

Each customer has a [Balance](https://docs.stripe.com/api/customers/
object#customer_object-balance) value, which denotes a debit or credit
that’s automatically applied to their next invoice upon finalization.
You may modify the value directly by using the [update customer API]
(https://docs.stripe.com/api/customers/update), or by creating a
Customer Balance Transaction, which increments or decrements the
customer’s `balance` by the specified `amount`.

Related guide: [Customer balance](https://docs.stripe.com/billing/
customer/balance)

The Billing customer portal is a Stripe-hosted UI for subscription and
billing management.

A portal configuration describes the functionality and features that
you want to provide to your customers through the portal.

A portal session describes the instantiation of the customer portal
for a particular customer. By visiting the session’s URL, the customer
can manage their subscriptions and billing details. For security
reasons, sessions are short-lived and will expire if the customer does
not visit the URL. Create sessions on-demand when customers intend to
manage their subscriptions and billing details.

Learn more in the [integration guide](https://docs.stripe.com/billing/
subscriptions/integrating-customer-portal).

A portal configuration describes the functionality and behavior of a
portal session.

Invoices are statements of amounts owed by a customer, and are either
generated one-off, or generated periodically from a subscription.

They contain [invoice items](#invoiceitems), and proration adjustments
that may be caused by subscription upgrades/downgrades (if necessary).

If your invoice is configured to be billed through automatic charges,
Stripe automatically finalizes your invoice and attempts payment. Note
that finalizing the invoice, [when automatic](https://docs.stripe.com/
invoicing/integration/automatic-advancement-collection), does not
happen immediately as the invoice is created. Stripe waits until one
hour after the last webhook was successfully sent (or the last webhook
timed out after failing). If you (and the platforms you may have
connected to) have no webhooks configured, Stripe waits one hour after
creation to finalize the invoice.

If your invoice is configured to be billed by sending an email, then
based on your [email settings](https://dashboard.stripe.com/account/
billing/automatic), Stripe will email the invoice to your customer and
await payment. These emails can contain a link to a hosted page to pay
the invoice.

Stripe applies any customer credit on the account before determining
the amount due for the invoice (i.e., the amount that will be actually
charged). If the amount due for the invoice is less than Stripe’s
[minimum allowed charge per currency](https://docs.stripe.com/
currencies#minimum-and-maximum-charge-amounts), the invoice is
automatically marked paid, and we add the amount due to the customer’s
credit balance which is applied to the next invoice.

More details on the customer’s credit balance are [here](https://
docs.stripe.com/billing/customer/balance).

Related guide: [Send invoices to customers](https://docs.stripe.com/
billing/invoices/sending)

Invoice Items represent the component lines of an [invoice](https://
docs.stripe.com/api/invoices). An invoice item is added to an invoice
by creating or updating it with an `invoice` field, at which point it
will be included as [an invoice line item](https://docs.stripe.com/
api/invoices/line_item) within [invoice.lines](https://
docs.stripe.com/api/invoices/object#invoice_object-lines).

Invoice Items can be created before you are ready to actually send the
invoice. This can be particularly useful when combined with a
[subscription](https://docs.stripe.com/api/subscriptions). Sometimes
you want to add a charge or credit to a customer, but actually charge
or credit the customer’s card only at the end of a regular billing
cycle. This is useful for combining several charges (to minimize per-
transaction fees), or for having Stripe tabulate your usage-based
billing totals.

Related guides: [Integrate with the Invoicing API](https://
docs.stripe.com/invoicing/integration), [Subscription Invoices]
(https://docs.stripe.com/billing/invoices/subscription#adding-
upcoming-invoice-items).

You can now model subscriptions more flexibly using the [Prices API]
(#prices). It replaces the Plans API and is backwards compatible to
simplify your migration.

Plans define the base price, currency, and billing cycle for recurring
purchases of products. [Products](#products) help you track inventory
or provisioning, and plans help you track pricing. Different physical
goods or levels of service should be represented by products, and
pricing options should be represented by plans. This approach lets you
change prices without having to change your provisioning scheme.

For example, you might have a single “gold” product that has plans for
$10/month, $100/year, €9/month, and €90/year.

Related guides: [Set up a subscription](https://docs.stripe.com/
billing/subscriptions/set-up-subscription) and more about [products
and prices](https://docs.stripe.com/products-prices/overview).

A Quote is a way to model prices that you’d like to provide to a
customer. Once accepted, it will automatically create an invoice,
subscription or subscription schedule.

Subscription items allow you to create customer subscriptions with
more than one plan, making it easy to represent complex billing
relationships.

A subscription schedule allows you to create and manage the lifecycle
of a subscription by predefining expected changes.

Related guide: [Subscription schedules](https://docs.stripe.com/
billing/subscriptions/subscription-schedules)

A test clock enables deterministic control over objects in testmode.
With a test clock, you can create objects at a frozen time in the past
or future, and advance to a specific future time to observe webhooks
and state changes. After the clock advances, you can either validate
the current state of your scenario (and test your assumptions), change
the current state of your scenario (and test more complex scenarios),
or keep advancing forward in time.

Usage records allow you to report customer usage and metrics to Stripe
for metered billing of subscription prices.

Related guide: [Metered billing](https://docs.stripe.com/billing/
subscriptions/metered-billing)

This is an object representing a Stripe account. You can retrieve it
to see properties on the account like its current requirements or if
the account is enabled to make live charges or receive payouts.

For Custom accounts, the properties below are always returned. For
other accounts, some properties are returned until that account has
started to go through Connect Onboarding. Once you create an [Account
Link](https://docs.stripe.com/api/account_links) or [Account Session]
(https://docs.stripe.com/api/account_sessions), some properties are
only returned for Custom accounts. Learn about the differences
[between accounts](https://docs.stripe.com/connect/accounts).

Login Links are single-use login link for an Express account to access
their Stripe dashboard.

Account Links are the means by which a Connect platform grants a
connected account permission to access Stripe-hosted applications,
such as Connect Onboarding.

Related guide: [Connect Onboarding](https://docs.stripe.com/connect/
custom/hosted-onboarding)

An AccountSession allows a Connect platform to grant access to a
connected account in Connect embedded components.

We recommend that you create an AccountSession each time you need to
display an embedded component to your user. Do not save
AccountSessions to your database as they expire relatively quickly,
and cannot be used more than once.

Related guide: [Connect embedded components](https://docs.stripe.com/
connect/get-started-connect-embedded-components)

When you collect a transaction fee on top of a charge made for your
user (using [Connect](https://docs.stripe.com/connect)), an
`Application Fee` object is created in your account. You can list,
retrieve, and refund application fees.

Related guide: [Collecting application fees](https://docs.stripe.com/
connect/direct-charges#collecting-fees)

`Application Fee Refund` objects allow you to refund an application
fee that has previously been created but not yet refunded. Funds will
be refunded to the Stripe account from which the fee was originally
collected.

Related guide: [Refunding application fees](https://docs.stripe.com/
connect/destination-charges#refunding-app-fee)

This is an object representing a capability for a Stripe account.

Related guide: [Account capabilities](https://docs.stripe.com/connect/
account-capabilities)

Stripe needs to collect certain pieces of information about each
account created. These requirements can differ depending on the
account’s country. The Country Specs API makes these rules available
to your integration.

You can also view the information from this API call as [an online
guide](https://docs.stripe.com/connect/required-verification-
information).

External bank accounts are financial accounts associated with a Stripe
platform’s connected accounts for the purpose of transferring funds to
or from the connected account’s Stripe balance.

External account cards are debit cards associated with a Stripe
platform’s connected accounts for the purpose of transferring funds to
or from the connected accounts Stripe balance.

To top up your Stripe balance, you create a top-up object. You can
retrieve individual top-ups, as well as list all top-ups. Top-ups are
identified by a unique, random ID.

Related guide: [Topping up your platform account](https://
docs.stripe.com/connect/top-ups)

A `Transfer` object is created when you move funds between Stripe
accounts as part of Connect.

Before April 6, 2017, transfers also represented movement of funds
from a Stripe account to a card or bank account. This behavior has
since been split out into a [Payout](#payout_object) object, with
corresponding payout endpoints. For more information, read about the
[transfer/payout split](https://docs.stripe.com/transfer-payout-
split).

Related guide: [Creating separate charges and transfers](https://
docs.stripe.com/connect/separate-charges-and-transfers)

[Stripe Connect](https://docs.stripe.com/connect) platforms can
reverse transfers made to a connected account, either entirely or
partially, and can also specify whether to refund any related
application fees. Transfer reversals add to the platform’s balance and
subtract from the destination account’s balance.

Reversing a transfer that was made for a [destination charge](https://
docs.stripe.com/connect/destination-charges) is allowed only up to the

amount of the charge. It is possible to reverse a [transfer_group]
(https://docs.stripe.com/connect/separate-charges-and-
transfers#transfer-options) transfer only if the destination account
has enough balance to cover the reversal.

Related guide: [Reversing transfers](https://docs.stripe.com/connect/
separate-charges-and-transfers#reversing-transfers)

Secret Store is an API that allows Stripe Apps developers to securely
persist secrets for use by UI Extensions and app backends.

The primary resource in Secret Store is a `secret`. Other apps can’t
view secrets created by an app. Additionally, secrets are scoped to
provide further permission control.

All Dashboard users and the app backend share `account` scoped
secrets. Use the `account` scope for secrets that don’t change per-
user, like a third-party API key.

A `user` scoped secret is accessible by the app backend and one
specific Dashboard user. Use the `user` scope for per-user secrets
like per-user OAuth tokens, where different users might have different
permissions.

Related guide: [Store data between page reloads](https://
docs.stripe.com/stripe-apps/store-auth-data-custom-objects)

An early fraud warning indicates that the card issuer has notified us
that a charge may be fraudulent.

Related guide: [Early fraud warnings](https://docs.stripe.com/
disputes/measuring#early-fraud-warnings)

Reviews can be used to supplement automated fraud detection with human
expertise.

Learn more about [Radar](https://docs.stripe.com/radar) and reviewing
payments [here](https://docs.stripe.com/radar/reviews).

Value lists allow you to group values together which can then be
referenced in rules.

Related guide: [Default Stripe lists](https://docs.stripe.com/radar/
lists#managing-list-items)

Value list items allow you to add specific values to a given Radar
value list, which can then be used in rules.

Related guide: [Managing list items](https://docs.stripe.com/radar/
lists#managing-list-items)

As a [card issuer](https://docs.stripe.com/issuing), you can dispute
transactions that the cardholder does not recognize, suspects to be
fraudulent, or has other issues with.

Related guide: [Issuing disputes](https://docs.stripe.com/issuing/
purchases/disputes)

Funding Instructions contain reusable bank account and routing
information. Push funds to these addresses via bank transfer to [top
up Issuing Balances](https://docs.stripe.com/issuing/funding/balance).

Any use of an [issued card](https://docs.stripe.com/issuing) that
results in funds entering or leaving your Stripe account, such as a
completed purchase or refund, is represented by an Issuing
`Transaction` object.

Related guide: [Issued card transactions](https://docs.stripe.com/
issuing/purchases/transactions)

A Connection Token is used by the Stripe Terminal SDK to connect to a
reader.

Related guide: [Fleet management](https://docs.stripe.com/terminal/
fleet/locations)

A TerminalHardwareOrder represents an order for Terminal hardware,
containing information such as the price, shipping information and the
items ordered.

A TerminalHardwareProduct is a category of hardware devices that are
generally similar, but may have variations depending on the country
it’s shipped to.

TerminalHardwareSKUs represent variations within the same Product (for
example, a country specific device). For example, WisePOS E is a
TerminalHardwareProduct and a WisePOS E - US and WisePOS E - UK are
TerminalHardwareSKUs.

A TerminalHardwareSKU represents a SKU for Terminal hardware. A SKU is
a representation of a product available for purchase, containing
information such as the name, price, and images.

A TerminalHardwareShipping represents a Shipping Method for Terminal
hardware. A Shipping Method is a country-specific representation of a
way to ship hardware, containing information such as the country,
name, and expected delivery date.

A Configurations object represents how features should be configured
for terminal readers.

Stripe Treasury provides users with a container for money called a
FinancialAccount that is separate from their Payments balance.
FinancialAccounts serve as the source and destination of Treasury’s
money movement APIs.

Encodes whether a FinancialAccount has access to a particular Feature,
with a `status` enum and associated `status_details`. Stripe or the
platform can control Features via the requested field.

TransactionEntries represent individual units of money movements
within a single [Transaction](#transactions).

Use OutboundTransfers to transfer funds from a [FinancialAccount]
(#financial_accounts) to a PaymentMethod belonging to the same entity.
To send funds to a different party, use [OutboundPayments]
(#outbound_payments) instead. You can send funds over ACH rails or
through a domestic wire transfer to a user’s own external bank
account.

Simulate OutboundTransfer state changes with the `/v1/test_helpers/
treasury/outbound_transfers` endpoints. These methods can only be
called on test mode objects.

Use OutboundPayments to send funds to another party’s external bank
account or [FinancialAccount](#financial_accounts). To send money to
an account belonging to the same user, use an [OutboundTransfer]
(#outbound_transfers).

Simulate OutboundPayment state changes with the `/v1/test_helpers/
treasury/outbound_payments` endpoints. These methods can only be
called on test mode objects.

ReceivedCredits represent funds sent to a [FinancialAccount]
(#financial_accounts) (for example, via ACH or wire). These money
movements are not initiated from the FinancialAccount.

ReceivedDebits represent funds pulled from a [FinancialAccount]
(#financial_accounts). These are not initiated from the
FinancialAccount.

You can reverse some [ReceivedCredits](#received_credits) depending on
their network and source flow. Reversing a ReceivedCredit leads to the
creation of a new object known as a CreditReversal.

You can reverse some [ReceivedDebits](#received_debits) depending on
their network and source flow. Reversing a ReceivedDebit leads to the
creation of a new object known as a DebitReversal.

If you have [scheduled a Sigma query](https://docs.stripe.com/sigma/

scheduled-queries), you’ll receive a
`sigma.scheduled_query_run.created` webhook each time the query runs.
The webhook contains a `ScheduledQueryRun` object, which you can use
to retrieve the query results.

The Report Run object represents an instance of a report type
generated with specific run parameters. Once the object is created,
Stripe begins processing the report. When the report has finished
running, it will give you a reference to a file where you can retrieve
your results. For an overview, see [API Access to Reports](https://
docs.stripe.com/reporting/statements/api).

Note that certain report types can only be run based on your live-mode
data (not test-mode data), and will error when queried without a
[live-mode API key](https://docs.stripe.com/keys#test-live-modes).

The Report Type resource corresponds to a particular type of report,
such as the “Activity summary” or “Itemized payouts” reports. These
objects are identified by an ID belonging to a set of enumerated
values. See [API Access to Reports documentation](https://
docs.stripe.com/reporting/statements/api) for those Report Type IDs,
along with required and optional parameters.

Note that certain report types can only be run based on your live-mode
data (not test-mode data), and will error when queried without a
[live-mode API key](https://docs.stripe.com/keys#test-live-modes).

A Financial Connections Account represents an account that exists
outside of Stripe, to which you have been granted some degree of
access.

Describes an owner of an account.

A Financial Connections Session is the secure way to programmatically
launch the client-side Stripe.js modal that lets your users link their
accounts.

A Transaction represents a real transaction that affects a Financial
Connections Account balance.

A Tax `Registration` lets us know that your business is registered to
collect tax on payments within a region, enabling you to
[automatically collect tax](https://docs.stripe.com/tax).

Stripe doesn’t register on your behalf with the relevant authorities
when you create a Tax `Registration` object. For more information on
how to register to collect tax, see [our guide](https://
docs.stripe.com/tax/registering).

Related guide: [Using the Registrations API](https://docs.stripe.com/

tax/registrations-api)

You can use Tax `Settings` to manage configurations used by Stripe Tax
calculations.

Related guide: [Using the Settings API](https://docs.stripe.com/tax/
settings-api)

A VerificationSession guides you through the process of collecting and
verifying the identities of your users. It contains details about the
type of verification, such as what [verification check](https://
docs.stripe.com/identity/verification-checks) to perform. Only create
one VerificationSession for each verification in your system.

A VerificationSession transitions through [multiple statuses](https://
docs.stripe.com/identity/how-sessions-work) throughout its lifetime as
it progresses through the verification flow. The VerificationSession
contains the user’s verified data after verification checks are
complete.

Related guide: [The Verification Sessions API](https://
docs.stripe.com/identity/verification-sessions)

A VerificationReport is the result of an attempt to collect and verify
data from a user. The collection of verification checks performed is
determined from the `type` and `options` parameters used. You can find
the result of each verification check performed in the appropriate
sub-resource: `document`, `id_number`, `selfie`.

Each VerificationReport contains a copy of any data collected by the
user as well as reference IDs which can be used to access collected
images through the [FileUpload](https://docs.stripe.com/api/files)
API. To configure and create VerificationReports, use the
[VerificationSession](https://docs.stripe.com/api/identity/
verification_sessions) API.

Related guides: [Accessing verification results](https://
docs.stripe.com/identity/verification-sessions#results).

A Crypto Onramp Session represents your customer’s session as they
purchase cryptocurrency through Stripe. Once payment is successful,
Stripe will fulfill the delivery of cryptocurrency to your user’s
wallet and contain a reference to the crypto transaction ID.

You can create an onramp session on your server and embed the widget
on your frontend. Alternatively, you can redirect your users to the
standalone hosted onramp.

Related guide: [Integrate the onramp](https://docs.stripe.com/crypto/
integrate-the-onramp)

Crypto Onramp Quotes are estimated quotes for onramp conversions into
all the different cryptocurrencies on different networks. The Quotes
API allows you to display quotes in your product UI before directing
the user to the onramp widget.

Related guide: [Quotes API](https://docs.stripe.com/crypto/quotes-api)

Orders represent your intent to purchase a particular Climate product.
When you create an order, the payment is deducted from your merchant
balance.

A Climate product represents a type of carbon removal unit available
for reservation. You can retrieve it to see the current price and
availability.

A supplier of carbon removal.

Instructs Stripe to make a request on your behalf using the
destination URL and HTTP method in the config. A config is set up for
each destination URL by Stripe at the time of onboarding. Stripe
verifies requests with your credentials in the config, and injects
card details from the payment_method into the request.

Stripe redacts all sensitive fields and headers, including
authentication credentials and card numbers, before storing the
request and response data in the forwarding Request object, which are
subject to a 30-day retention period.

You can provide a Stripe idempotency key to make sure that requests
with the same key result in only one outbound request. The Stripe
idempotency key provided should be unique and different from any
idempotency keys provided on the underlying third-party request.

Forwarding Requests are synchronous requests that return a response or
time out according to Stripe’s limits.

You can configure [webhook endpoints](https://docs.stripe.com/
webhooks/) via the API to be notified about events that happen in your
Stripe account or connected accounts.

Most users configure webhooks from [the dashboard](https://
dashboard.stripe.com/webhooks), which provides a user interface for
registering and testing your webhook endpoints.

Related guide: [Setting up webhooks](https://docs.stripe.com/webhooks/
configure)

