
Peter Gustafson
writing sample
Coinbase Mar 10, 2022

Exchange WebSocket Overview | Coinbase Cloud
The WebSocket feed is publicly available and provides real-time market
data updates for orders and trades. Two endpoints are supported in
both production and sandbox:

* **Coinbase Market Data** is our traditional feed which is
available without authentication.
* **Coinbase Direct Market Data** has direct access to Coinbase
Exchange servers and requires [Authentication](https://
docs.cloud.coinbase.com/exchange/docs/websocket-auth).

tip

You can subscribe to both endpoints, but if `ws-direct` is your
primary connection, we recommend using `ws-feed` as a failover.

info

Coinbase Market Data
production = wss://ws-feed.exchange.coinbase.com
sandbox = wss://ws-feed-public.sandbox.exchange.coinbase.com

Coinbase Direct Market Data
production = wss://ws-direct.exchange.coinbase.com
sandbox = wss://ws-direct.sandbox.exchange.coinbase.com

Protocol[](#protocol "Direct link to Protocol")
--

The WebSocket feed uses a bidirectional protocol that encodes all
messages as JSON objects. All messages have a `type` attribute that
can be used to handle the message appropriately.

tip

New message types can be added at any time. Clients are expected to
ignore messages they do not support.

Subscribe[](#subscribe "Direct link to Subscribe")

To begin receiving feed messages, you must send a `subscribe` message
to the server indicating which channels and products to receive. This
message is mandatory—you are disconnected if no `subscribe` has been
received within 5 seconds.

caution

To receive feed messages, you must send a `subscribe` message or you
are disconnected in 5 seconds.

```

{
    "type": "subscribe",
    "product_ids": [
        "ETH-USD",
        "ETH-EUR"
    ],
    "channels": [
        "level2",
        "heartbeat",
        {
            "name": "ticker",
            "product_ids": [
                "ETH-BTC",
                "ETH-USD"
            ]
        }
    ]
}

```

You receive a `subscriptions` message as a response to an `subscribe`
message.

Unsubscribe[](#unsubscribe "Direct link to Unsubscribe")

To unsubscribe from channel/product pairs, send an `unsubscribe`
message. The structure is equivalent to `subscribe` messages.

tip

You can also unsubscribe from a channel entirely by providing no
product IDs.

```

{
    "type": "unsubscribe",
    "channels": [
        "heartbeat"



    ]
}

```

You receive a `subscriptions` message as a response to an
`unsubscribe` message.

Specifying Product IDs[](#specifying-product-ids "Direct link to
Specifying Product IDs")

There are two ways to specify the product IDs to listen for within
each channel:

* You can define product IDs for an individual channel.
* You can define product IDs at the root of the object—this adds
them to all the channels you subscribe to.

```

{
    "type": "unsubscribe",
    "product_ids": [
        "ETH-USD",
        "ETH-EUR"
    ],
    "channels": [
        "ticker"
    ]
}

```

Subscriptions Message[](#subscriptions-message "Direct link to
Subscriptions Message")

A `subscriptions` message is sent in response to both [subscribe]
(#subscribe) and [unsubscribe](#unsubscribe) messages.

In response to a `subscribe` message, the `subscriptions` message
lists all channels you are subscribed to. Subsequent subscribe
messages add to the list of subscriptions. If you subscribed to a
channel without being authenticated, you will remain in the
unauthenticated channel.

```

{



    "type": "subscriptions",
    "channels": [
        {
            "name": "level2",
            "product_ids": [
                "ETH-USD",
                "ETH-EUR"
            ],
        },
        {
            "name": "heartbeat",
            "product_ids": [
                "ETH-USD",
                "ETH-EUR"
            ],
        },
        {
            "name": "ticker",
            "product_ids": [
                "ETH-USD",
                "ETH-EUR",
                "ETH-BTC"
            ]
        }
    ]
}

```

Websocket Compression Extension[](#websocket-compression-extension
"Direct link to Websocket Compression Extension")
--

Websocket compression, defined in RFC7692, compresses the payload of
WebSocket messages which can increase total throughput and potentially
reduce message delivery latency. The **permessage-deflate extension**
can be enabled by adding the extension header. Currently, it is not
possible to specify the compression level.

From [RFC7692](https://datatracker.ietf.org/doc/html/
rfc7692#section-7.1.3):

The simplest "Sec-WebSocket-Extensions" header in a client (or
server's) opening handshake to offer (or accept) use of the
"permessage-deflate" extension looks like this:

```
    GET wss://ws-feed.exchange.coinbase.com



       Sec-WebSocket-Extensions: permessage-deflate

```

Sequence Numbers[](#sequence-numbers "Direct link to Sequence
Numbers")
--
--

Most feed messages contain a sequence number. Sequence numbers are
increasing integer values for each product, with each new message
being exactly one sequence number greater than the one before it.

Sequence numbers that are _greater than one integer value_ from the
previous number indicate that a message has been dropped. Sequence
numbers that are _less_ than the previous number can be ignored or
represent a message that has arrived out of order.

In either situation you may need to perform logic to make sure your
system is in the correct state.

caution

Even though a WebSocket connection is over TCP, the WebSocket servers
receive market data in a manner that can result in dropped messages.
Your feed consumer should be designed to handle sequence gaps and out
of order messages, or should use channels that guarantee delivery of
messages.

tip

To guarantee that messages are delivered and your order book is in
sync, consider using the [level2 channel](https://
docs.cloud.coinbase.com/exchange/docs/websocket-channels#level2-
channel).

