
1/8/22, 5:56 PM Literals and identifiers

https://ton.org/docs/#/func/literals_identifiers 1/4

Literals and Identifiers

Number literals
FunC allows decimal and hexadecimal integer literals (leading zeros are allowed).

For example, 0 , 123 , -17 , 00987 , 0xef , 0xEF , 0x0 ,

-0xfFAb , 0x0001 , -0 , -0x0 are valid number literals.

String literals
Strings in FunC are quoted in double quotes " like "this is a

string" . Special symbols like \n and multi-line stings are not supported.

String are used only in asm functions definitions.

Identifiers
FunC allows a really wide class of identifiers (functions and variables names).

Namely, any (single-line) string which doesn't contain special symbols ; , , ,

1/8/22, 5:56 PM Literals and identifiers

https://ton.org/docs/#/func/literals_identifiers 2/4

(,) , (space or tab), ~ and . , doesn't start as comment or string

literal (with "), isn't a number literal, isn't an underscore _ and isn't a

keyword is a valid identifier (with the only exception that if it starts with ` , it

must end with the same ` and can't contain any other ` except for this

two).

Also function names in function definitions may start with . or ~ .

For example, those are valid identifier:

query , query' , query''

elem0 , elem1 , elem2

CHECK

_internal_value

message_found?

get_pubkeys&signatures

dict::udict_set_builder

+ (the standard addition operator of type (int, int) -> int

in prefix notation, although it is already defined)

fatal!

' at the end of the name of a variable is conventionally used when some

modified version of the old value is introduced. For example, almost all

modifying built-in primitives for hashmap manipulation (except ones with prefix

1/8/22, 5:56 PM Literals and identifiers

https://ton.org/docs/#/func/literals_identifiers 3/4

~) take a hashmap and return a new version of the hashmap along with some

other data, if necessary. It is convenient to name those values with the same

name su�ixed by ' .

Su�ix ? is usually used for boolean variables (TVM hasn't built-in type bool;

bools are represented by integers: 0 is false and -1 is true) or for functions that

returns some flag, usually indicating success of the operation (like

udict_get? from stdlib.fc).

Those are not valid identifiers:

take(first)Entry

"not_a_string

msg.sender

send_message,then_terminate

_

Some more weird examples of valid identifiers:

123validname

2+2=2*2

-alsovalidname

0xefefefhahaha

{hehehe}

1/8/22, 5:56 PM Literals and identifiers

https://ton.org/docs/#/func/literals_identifiers 4/4

pa{--}in"`aaa`"

Those also are not valid identifier:

pa;;in"`aaa`" (because ; is prohibited)

{-aaa-}

aa(bb

123 (it's a number)

Also FunC has special type of identifiers, which quoted in back quotes ` . In the

quotes any symbols are allowed except for \n and the quotes themself.

For example, `I'm a variable too` is a valid identifier, as well as

`any symbols ; ~ () are allowed here...`

