
Fortellis.io
Author: Peter Gustafson
March 2018

API Design Guidelines

Introduction
The Fortellis Automotive Commerce Exchange platform provides Application
Programming Interfaces (APIs) to be used as business solutions. The intent is to
dovetail unified design with industry-standard principles. The result is a network of
solutions to enhance business processes and customer experiences.

We're publishing these guidelines to define acceptable standards of RESTful API
design. If you have suggestions or are interested in contributing to our community,
please contact us.

The Fortellis APIs rely on the RESTful architecture supporting diverse use cases
following REST standards and conventions. Our calls are returned in JSON. These API
Design Guidelines are best practices we recommend you follow when integrating APIs
on to the Fortellis Automotive Commerce Exchange platform. The terms REST and
RESTful are interchangeable.

RESTful Architecture
Fortellis adheres to Roy Fielding's dissertation section 5.2 RESTful architecture
resource definitions. All information is considered a resource. Below are resource
definitions:

● A graphic, image or document is a resource.
● Resources include temporal services connected to data sets.
● Mapped values to empty sets are resources even before they're defined.
● Collections, concepts, maps and entities are resources.
● Values are resources when representing identifiers.
● REST resource identifier labels of the interaction between components are

resources.

https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.json.org/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2

● Fortellis is the authority over resource identifiers and naming conventions. We
maintain the semantic authenticity of our system mapping to provide functional
services to our users.

Representation
We rely on the structure of REST components to manage the action of resources. Our
APIs obtain the current or future state of a resource and transfer that representation to
system components using bytes and metadata.

Services
We define services as software products providing functionality to the APIs and their
products. The Fortellis API services provide users access to our platform, APIs, and
provider solutions. Services are described in two categories:

1. Capability APIs: These are public user APIs delivering product-based

capabilities. Capability APIs are reusable and designed to manage the front-end
user experience for internal and external users while protecting specific domain
models.

2. Experience-specific APIs: These are product-based services solving business
needs through specialization and built on Capability APIs. Experience-specific
APIs manage user interaction with the Fortellis platform.

Capability
Our API architecture is a solution-driven network. To support our users, we've designed
the Fortellis Automotive Commerce Exchange capability to resolve business needs
through our APIs and platform.

Client and Consumer APIs
These are individual entities which invoke API requests and receive their responses.

Namespaces
Our APIs are designed using the namespace model to clarify isolated entities such as
structured domains and application data as identifiers. Namespaces provide logic to the
APIs maintaining rigid isolation of our APIs from the controllers.

Domain Model
The Fortellis domain model defines the data accessed by APIs. We also use domains to
group APIs as functional collections within an automotive business service. Examples of
our data domains are Vehicle Sales Quotes, Merchandisable Vehicles, Service
Appointments, and Repair Orders.

Consistency
API service functions follow defined rules providing a consistent experience for users to
learn how to interact with the Fortellis APIs. The architecture of our platform is built to
provide consistent service standards, vocabulary, interaction styles, and granularity for
seamless interoperability.

Service Design Principles
The following design principles outline best practices for REST architectural standards.

Loose Coupling

The Fortellis API services are loosely coupled from one another. Due to the relationship
between users and their interactions with our APIs, we've developed the API platform by
loosening the dependencies between API service products and members to maintain
interoperability. Services are safeguarded from the risk of exposing API implementation
functions and protect user interaction from updated version functionality. Domain
services offer functionality independent of other Fortellis domain products.

Encapsulation

A specific domain service may access another domain, its data, and functionality when
permission is explicitly requested and granted by the owner of the associated domain.

The goal is to provide functional services while protecting the independence of all
domains. Services provide defined boundaries restricting unauthorized data access to
Fortellis domains.

Stability & Reusability

Robust API design provides stability to support user access for a defined length of time.
New API versions must protect backward compatibility. Fortellis applications are
designed to be reusable for business use cases in multiple contexts.

Ease of Use

We follow industry standards of composability to aid users with ease of use while
learning our applications. Services are understandable, offer well-defined authentication
processes, usage, pagination, error codes, and deployment.

Externalization

Services are easily externalizable for users to interact with multiple API domains and
use cases while respecting the functionality of individual solutions. Authentication,
authorization procedures, and rate-limiting standards follow the domain model use
cases and binding protocols.

HTTP Methods, Headers, and Statuses
Fortellis APIs use standard HTTP verbs for their methods (endpoints). These verbs
correspond to the primary operations of CRUD (Create, Read, Update, and Delete).
Below are the acceptable methods with examples:

Method Description Example

GET Retrieves a
resource. GET must
not change the state
of an underlying
resource.

GET

https://api.fortellis.io/service/v

1/appointments

POST Creates a resource,
sub-resource or
executes an
operation of a
resource.

POST

https://api.fortellis.io/service/v

1/appointments/12345/service-items

PATCH Performs a partial
update to a resource
and sub-resource.
This method is rarely
used in the Fortellis
APIs.

DELETE Permanently deletes
an existing resource.

DELETE

https://api.fortellis.io/v1/repair

-orders/R67890/lines/2

HTTP Headers

The HTTP headers provide metadata information about the body defining the uniformity
of the standard. HTTP header names aren't case sensitive. The API headers manage
cross-cutting concerns and don't provide domain-specific data values. We recommend
avoiding the use of custom headers.

Fortellis users should understand that in some instances an HTTP header can be
dropped or changed without notification. Therefore, our APIs must not be reliant on the
rigidity of HTTP headers.

HTTP Request Headers

We integrate our API HTTP request headers based on the Internet Engineering Task
Force (IETF) guidelines. In the following table are the HTTP header request field names
and related third-party source documentation we've integrated into our API scheme:

Field Name Source

Accept, Accept-Charset & Accept-Language RFC 7231

apikey

http://tools.ietf.org/html/rfc7231#page-33
http://tools.ietf.org/html/rfc7231#page-33
https://tools.ietf.org/html/rfc7231#section-5.3.3

exchange-org-id

If-Match, If-None-Match & If-Range RFC 7232

Prefer RFC 7240

Request-Id RFC draft

HTTP Response Headers

In the table below are HTTP response header field names, descriptions and third-party
source documentation standards accepted by the Fortellis scheme:

Field Name Description Source

Content-Language Specifies the content language. The
default is en-US and must be in the
header of the response.

RFC 3282

Content-Type Defines the media type in the
request/response body.

RFC 2045

ETag Differentiates two representations of
an individual resource. An Etag must
be in the header response.

RFC 7232

Link Defines a resource connection using
IRIs.

RFC 5988

Location A field in the response header which
redirects user requests to a resource
(excluding Request-URI).

RFC 4229

Preference-Applied An optional response header which
validates the authenticity of server
prefer tokens to process a request.

RFC 7240

Request-Id A custom header identifying a
resource for tracking purposes.

RFC draft

http://tools.ietf.org/html/rfc7232#section-3.1
http://tools.ietf.org/html/rfc7240
http://tools.ietf.org/html/draft-ietf-core-echo-request-tag-01
http://tools.ietf.org/html/rfc3282
https://www.ietf.org/rfc/rfc2045.txt
http://tools.ietf.org/html/rfc7232#section-2.3
http://www.ietf.org/rfc/rfc3987.txt
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc4229#section-2.1.27
http://tools.ietf.org/html/rfc7240
http://tools.ietf.org/html/draft-ietf-quic-http-10#section-3.2.1

HTTP Header Propagation

Request headers transmit relevant custom API headers as well as HTTP header
requests to downstream services.

HTTP Response Status Codes

Fortellis uses service status codes to define response errors and their descriptions. For
example, a bad request returns an error code of 400. The Fortellis API servers issue
standard status code conventions and descriptions. Refer to RFC 7231 for details on
industry-standard response status codes.

Hypermedia
HATEOAS

We subscribe to Roy Fielding's definition of HATEOAS as Hypermedia As The Engine
Of Application State. The Fortellis API services are accessible through the use of
hypermedia links. The APIs are hypermedia-compliant and permit standard requests
such as DELETE, PATCH and POST. Examples are provided below.

A client makes a POST request creating a new user:

POST https://api.fortellis.io/crm/v1/customer/users {

"givenName": "James", "surname" : "Greenwood", ... }

The API creates a new user from the input and returns the following links to the client in
the response:

{ HTTP/1.1 201 CREATED Content-Type: application/json ...

"links": [{ "href":

"https://api.fortellis.io/crm/v1/customer/users/ALT-JFWXHGUV7VI"

, "rel": "self", }, { "href":

"https://api.fortellis.io/crm/v1/customer/users/ALT-JFWXHGUV7VI"

, "rel": "delete", "method": "DELETE" }, { "href":

"https://api.fortellis.io/crm/v1/customer/users/ALT-JFWXHGUV7VI"

, "rel": "replace", "method": "PUT" }, { "href":

"https://api.fortellis.io/crm/v1/customer/users/ALT-JFWXHGUV7VI"

, "rel": "edit", "method": "PATCH" }] }

https://tools.ietf.org/html/rfc7231#section-6
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

A Fortellis API user can store these links in their database for later use or for an admin
to delete one of the users. The API user makes a GET request to the same fixed URI
'/users' in the example below:

GET https://api.fortellis.io/crm/v1/customer/users

The API returns all of the users in the system with respective

`self` links in the following response:

{ "totalItems": "166", "totalPages": "83", "users": [{

"givenName": "James", "surname": "Greenwood", ... "links": [{

"href":

"https://api.fortellis.io/crm/v1/customer/users/ALT-JFWXHGUV7VI"

, "rel": "self" }] }, { "givenName": "David", "surname":

"Brown", ... "links": [{ "href":

"https://api.fortellis.io/crm/v1/customer/users/ALT-MDFSKFGIFJ86

DSF", "rel": "self" } }, ... }

To delete the user, the client retrieves the URI of the link relation type `delete` from the
database and performs a DELETE operation on the URI.

Request:

GET

https://api.fortellis.io/crm/v1/customer/users/ALT-JFWXHGUV7VI

Response:

HTTP/1.1 200 OK Content-Type: application/json { "givenName":

"James", "surname": "Greenwood", ... "links": [{ "href":

"https://api.fortellis.io/crm/v1/customer/users/ALT-JFWXHGUV7VI"

, "rel": "self", }, { "href":

"https://api.fortellis.io/crm/v1/customer/users/ALT-JFWXHGUV7VI"

, "rel": "delete", "method": "DELETE" }, { "href":

"https://api.fortellis.io/crm/v1/customer/users/ALT-JFWXHGUV7VI"

, "rel": "replace", "method": "PUT" }, { "href":

"https://api.fortellis.iocrm/v1/customer/users/ALT-JFWXHGUV7VI",

"rel": "edit", "method": "PATCH" } }

Naming Conventions
Fortellis URIs follow the RFC 3986 naming specification. Below are examples and a
table of naming convention standards:

● [scheme"://"][host[':'port]]'/'domain ('/'sub-domain)

'/v'major-version '/'namespace '/'resource ('/'resource)*

'?' query

● https://api.fortellis.com/sales/deal-creation/v1/quoting/{q

uoteId}

Term Description Example

end-point [scheme "://"][

host [':' port]]

api.fortellis.io/v1/appointments

domain URL fortellis.io

expressions "{" [operator]

variable-set "}"

underscore _

literals (-) 2019-10-11T09:30:00+00:00

name Alpha (Alpha |

Digit | '_')*

accountId

query name '=' value

('&' name =

value)*

name: "name.firstName"

resource resource-name

['/'

resource-id]

appointmentId

resource-id value operationId: queryDealershipSettings

resource-path "/v" version '/'

namespace-name

'/' resource

('/' resource)

api.fortellis.io/v1/appointments

http://tools.ietf.org/html/rfc3986

scheme "http" or

"https"

https://api.fortellis.io

sub-domain URL pattern api.example.io

URI [end-point] '/'

resource-path

['?'query]

api.fortellis.io/sales/deal-creation

value URI-percent

encoded value

percent sign %

● Asterisks * specify zero or occurrences.
● Brackets [] define optional fields.
● Double quotes " " denote strings.
● Parenthesis () group resources.
● Single quotes ' ' identify special characters.

Resource Names

Resource names should be lowercase and use only alphanumeric characters and
hyphens (-) used as word separators in URI path literals. It's important to note this is
the only instance hyphens are used as word separators. For other uses, the underscore
character (_) is used.

Query Parameter Names

Query parameter values are percent-encoded. Query parameters start with a letter and
must be lower case. Lower case alpha characters, digits and underscores (_) are
permitted.

Query Parameter Headers

Some query parameter headers for cross-domain calls may not be supported. The
criteria when to accept headers as parameters are below:

1. Custom headers are accepted as parameters.
2. Required headers are accepted as parameters.

3. Required headers such as the authorization header may not be appropriate as a
parameter.

4. The Accept header is the exception to the rule. Commonly, it's best to use simple
names.

Field Names

The Fortellis APIs follow the JSON standard to handle field names. The values can be
numbers, arrays, objects, booleans, and strings. Below are sample field names and
their descriptions:

1. Key names are camelCase words separated by underscores (_) such as

bookingSessionId or foo_barBaz.
2. For boolean type keys, do not use prefixes like `is` or `has` (use closedRO, not

ClosedRO).
3. Array field representations are named using plural nouns (for example,

priceFormulas).
4. The suffix 'Id' is used to identify the main resource of a domain (for example,

vehicleId or customerId).
5. The suffix 'Code' is used to indicate the field is a lookup code in the system (for

example, titleCode or modelCode).

Enum Names

Enum names use only uppercase alphanumeric characters and an underscore (_).
Two examples are below:

'FIELD_14' NOT_EQUAL'

Link Relation Names

Link relation types are represented by `rel` and must be created using lowercase
characters. See the following example:

"links": [{ "href": "href":

"https://api.fortellis.io/crm/v1/customer/partner-referrals/ALT-

JFWXHGUV7VI/activate", "rel": "activate", "method": "POST" }]

File Names

http://json.org/

The JSON Schema types are located in separate files. They're referenced using the
`$ref` syntax (for example:`"$ref":"object.json"`) and follow underscore naming syntax
such as `transaction_history.json`.

JSON Primitive Types
The RFC draft is the JSON Schema standard Fortellis uses to define all of the fields in
our APIs. Below are specific uses of the JSON primitive types.

Strings

The use of strings is defined with minLength and maxLength. The reason strings should
contain a maxLength is to maintain database columns for backward compatibility.

The one caveat not to use the maxLength string is when an undefined string length is
from upstream resources. Use good judgement when naming your strings. Fewer
characters is a recommended. Your strings should also use consistent pattern
properties when defining enumerated values and numbers.

Enumeration

Avoid creating new values to an enum in your APIs which provide a service response as
it may conflict with backward compatibility. Often, it's due to a client rejecting a response
as it tries to return values from a previous version. Therefore, avoid new enum values at
all costs and adhere to the following recommendations using an enum with the JSON
type string:

1. Only use an enum when values will remain fixed and never change.
2. Instead of using the keyword enum in arrays, use a string type and include

acceptable values in your documentation.
3. When using a string type expressing enum values, use strict naming conventions

by using a pattern field.
4. For pre-existing database columns, set the maxLength to 255 and minLength to

1 to prevent clients sending empty string values.

Below is a JSON example which enforces naming conventions, length constraints and
pattern field:

https://tools.ietf.org/html/draft-zyp-json-schema-04

{ "type": "string", "minLength": 1, "maxLength":

255, "pattern": "^[0-9A-Z_]+$", "description": "Field

description." }

Number Types

JSON defines number types as fixed-point values for numbers and integers. These
types are unbounded except if the schema requires minimum and maximum values. To
maintain compatibility, we recommend the following conventions:

1. Use a string to define decimal values.
2. Represent integer types with minimum and maximum values.
3. Define your integer type values as 32-bit integers (between ((2^31) - 1) and

-(2^31).
4. Avoid JSON Schema number types since some languages convert number types

as fixed-point or floating-point values.

Examples:

{ "type": "integer", "minimum": 0, "maximum":

2147483647 }

When using a string type to represent a number, use minLength and maxLength and
constrain the definition of the string by using number patterns. The example below uses
positive integers and zero with a maxLength of 6:

{ "type": "string", "pattern": "^[0-9]+$",

"minLength": 1, "maxLength": 6 }

The following is a representation of fixed-point decimal values (positive or negative) and
a maxLength of 32:

{ "type": "string", "pattern":

"^(-?[0-9]+|-?([0-9]+)?[.][0-9]+)$" "maxLength": 32,

"minLength": 1, }

Array

A JSON array is unbounded. Most programming languages require a maximum limit of
the size of arrays. We recommend APIs maintain cross-compatibility for all languages.
Your maxItems should always be fully defined. However, maxItems should be

constrained to a 16-bit signed integer. Design your APIs for scale rather than merely for
the scope of your current build. MinItems must be defined with values of 0 or 1.

Null

A JSON property can only be null if it's defined by the schema and represented by the
type keyword {"type": "null"}. Avoid using composition keywords. For example, anyOf
and oneOf permit multiple types and return invalid data.

Keep in mind that a missing JSON property is undefined (excluding null). We strongly
recommend you avoid JSON null to maintain cross-language compatibility.

Common Types

Type Recommended Use Notes

% interest rate & APR percentage.json Represents a fixed decimal
point. Example: 16.99% must
be returned by the API as
16.99.

Address address_portable.json Offers backward compatibility,
supports i18n-api's and W3
HTML5.1's autofill fields.

 City city The name of the city.

 County county The geographic region of the
city.

 Country code country_code Your API must use the ISO
3166-1 alpha-2 two-letter
country code standard.

 Block name block_name The name of the block of the
residence.

 Door number door_number The apartment or
condominium door number.

https://tools.ietf.org/html/draft-zyp-json-schema-03
https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html

 Floor number floor_number The apartment or
condominium floor number.

 Postal code postal_code The five digit city postal code.

 Province province The name of the province or
state.

 Street name street_name The name of the street.

 Suburb suburb The region of the city.

 House number house_number The number of residence.

Date and time date_time.json Expresses date. Refer to RFC
3339 for details.

 Date no time date_no_time.json Represents full date. Refer to
RFC 3339 for details.

 Date year month date_year_month.json Defines year and month such
as 2018-04.

 Time no date time_nodate.json Express full time. Refer to
RFC 3339 for details.

 Time zone time_zone.json Notes region time zone. All
APIs must use UTC, Refer to
RFC 3339 for details.

Email address local-part@domain.xx User email address. Refer to
RFC 5322.

Geographical location Refer to RFC 4119.

Internationalization Represents country, currency,
language and locale

 Country code country_code International two-letter country
identification. Refer to ISO
3166.

 Currency code currency_code Use three letter currency

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc5322#section-3.4.1
https://tools.ietf.org/html/rfc4119
https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html

codes as defined in ISO 4217.

 Language language.json Use BCP-47 language tag.

 Locale locale.json Use country_code.

Phone number +6189761234 Apply country code with
preceding +. Refer to RFC
2916.

Units of measurement Refer to RFC 2916.

Error Handling
We follow standard HTTP specification error codes and descriptions. For example,
codes returned with values in the 400s are client-side errors. Codes in the 500s return
server-side errors.

Sometimes users may need additional guidance with error code definitions and causes.
Document your error codes with clarity so users can understand error responses. When
building your APIs, they must return JSON error codes adhering to the error.json
schema.

Error Schema

Good API design must include the values below:

Value Description

debug_id A server-side error defined by a unique identifier.

details A summary of the field error, value, the reason and the location of the
error (for example, request, path or body).

links HATEOAS links to help documentation about the error and how to
resolve.

message A simple message defining the error and advice how to fix it. We
recommend you build an error catalog for users to refer to when
searching for answers.

https://www.currency-iso.org/en/home.html
https://tools.ietf.org/html/bcp47
https://tools.ietf.org/html/rfc2916
https://tools.ietf.org/html/rfc2916
https://tools.ietf.org/html/rfc2916

name A logical name of the error. Be smart by integrating an
error_spec.json#name catalog into your API so errors can be
retrieved and delivered to users with consistency.

Sample Errors

The following is a sample VALIDATION_ERROR in one field. A `400 Bad Request`
HTTP status code is returned.

{ "name":"VALIDATION_ERROR", "details":[{

"field":"customerId", "issue":"Required field is missing",

"location":"body" }], "debugId":"d1e6bbbc4b30e493",

"message":"customerId was not provided",

"information_link":"http://developer.fortellis.io/errors/validat

ion-error" }

Below is a VALIDATION_ERROR in two fields. The `details` variable is an array which
lists all instances in the error.

{ "name": "VALIDATION_ERROR", "details": [{

"field":"customerId", "issue":"customerId is required",

"location":"body" }, { "field": "vehicleId", "issue":

"vehicleId is required", "location": "body" }], "debugId":

"53a75d4c6c3249e2", "message": "Invalid data provided",

"information_link":

"http://developer.fortellis.io/errors/validation-error" }

{ "name": "BALANCE_ERROR", "debug_id": "123456789", "message":

"The account balance is too low. Add balance to your account to

proceed.", "information_link":

"http://developer.fortellis.io/errors/validation-error" }

When a request requires interaction with the Fortellis API the HTTP status code of '422
Unprocessable Entity' is returned in the following example:

Casing
The HTTP headers are in camelCase and hyphenated (-) syntax. Payload properties
should be camelCase; for example: vehicleSpecId. Domain and subdomains in the
URI should be list case such as merchandisable-vehicles.

Filtering
Use field filtering as a query parameter by entering name values to the top-level
attribute of a domain resource. Below is an example filtering a payment calculation by
IDs:

GET /payments/paymentsCalculationId { "paymentsCalculationId":

[{ "5e7c55bf-8fd5-4872-8cff-e5043b0dc348":

"5e7c55bf-8fd5-4872-8cff-e5043b0dc360", },] }

When filtering multiple values, the only objects returned are ones that meet the filter
criteria.

Sorting
Sorting keys are used to sort a set of query string parameters. The sort direction value
for ascend is ‘asc’. The descend value is ‘desc’. The default sort direction is managed
by the server specification. In the table below are acceptable sorting values:

Keys Description

sort=key1,key2 key1 is the first value; key2 is used as the second
key.

sort=key1:asc,key2:desc sort=key1:asc is the ascending direction; key2:desc
is descending.

Pagination
Fortellis recommends using limit/offset pagination for paging since it integrates well with
Apps using SQL databases. Below is an example query which returns 20 rows
beginning with the 100th row (date descending).

Request of most recent 20 items:

GET /items?limit=20

A second page request:

GET /items?limit=20&offset=20

A third page request:

GET /items?limit=20&offset=40

HTTP Status Codes
We rely on REST service status codes to define errors and their descriptions. For
example, a bad request returns an error code of 400. The Fortellis API servers issue
standard status code conventions and descriptions. Refer to RFC 7231 for additional
guidance on HTTP status codes.

Link Description Object
The Fortellis APIs use the Link Description Object (LDOs) schema. The LDO properties
interacting with our APIs are described below:

Property Description

href The href property value must be included. Absolute URI template
conventions are mandatory defining href properties. The incoming
value of the Host Header should be used for the Host Field. For
example: api.fortellis.io.

method The method property defines the HTTP verb and is required to
create a request to target a resource link. In cases when the
method property is omitted, a GET value is used.

rel The Link Relation Type (rel) property defines the relationship to the
target path resource. Rel values are mandatory.

title The title property assigns a name to the link although is not
required.

Avoid using HTTP link and location headers for LDOs. Instead, we advise returning
LDOs in the HTTP response body. The reason is that the HTTP header is a
point-to-point connection between the client and service. Some responses may require
interaction with other service layers and won't relay header data to these services. For

http://tools.ietf.org/html/rfc7231#section-6
http://json-schema.org/latest/json-schema-hypermedia.html#anchor17
http://api.fortellis.io/

more details on when to avoid using HTTP headers for LDOs refer to the JSON
Hyper-Schema Release Notes (draft 4 section).

Links Array
JSON schemas use the 'links' array property to identify their associated Link Description
Objects. The links array must be included in the API resource schema URI template.
The links array URI template should be declared outside of the properties keyword to
support code generator setter/getter methods of the links array generated object
resource.

The following example shows a links array schema:

{ "type": "object", "$schema":

"http://json-schema.org/draft-04/hyper-schema#", "description":

"A sample resource representing a customer name.", "properties":

{ "id": { "type": "string", "description": "Unique ID to

identify a customer." }, "firstName": { "type": "string",

"description": "Customer's first name." }, "lastName": { "type":

"string", "description": "Customer's last name." }, "links": {

"type": "array", "items": { "$ref":

"http://json-schema.org/draft-04/hyper-schema#definitions/linkDe

scription" } } }, "links": [{ "href":

"https://api.fortellis.io/crm/v1/customer/users/{id}", "rel":

"self" }, { "href":

"https://api.fortellis.io/crm/v1/customer/users/{id}", "rel":

"delete", "method": "DELETE" }, { "href":

"https://api.fortellis.io/crm/v1/customer/users/{id}", "rel":

"replace", "method": "PUT" }, { "href":

"https://api.fortellis.io/crm/v1/customer/users/{id}", "rel":

"edit", "method": "PATCH" }] }

The following example shows a response that is compliant with the above schema:

{ "id": "ALT-JFWXHGUV7VI", "firstName": "John", "lastName":

"Doe", "links": [{ "href":

"https://api.fortellis.io/crm/v1/customer/users/ALT-JFWXHGUV7VI"

, "rel": "self" }, { "href":

"https://api.fortellis.io/crm/v1/customer/users/ALT-JFWXHGUV7VI"

, "rel": "edit", "method": "PATCH" }] }

http://json-schema.org/draft-07/json-hyper-schema-release-notes.html
http://json-schema.org/draft-07/json-hyper-schema-release-notes.html

Link Relation Type
A Link Relation Type (LRT) is an identifier for a resource link. The Fortellis APIs provide
LRTs which are unambiguous and clearly describe the semantics of a link and its
representation.

We base our API Design Guidelines on the RFC 5988 model. Controller style
operations must be passed with the 'action' name for the link relation type. For example,
'activate' or 'cancel'. The following table describes common LRTs and their descriptions:

LRT Description

collection A collection of resources. For example: /common/v1/users.

create A link used to create a resource.

edit Edits or makes a partial update to a link. It's used to represent
the PATCH operation link.

delete Deletes a link resource. It's used as an extended operation.

first The first page list result.

last The last page list result when total_required is include in
the query parameter.

latest-version Targets the latest version of a resource.

next The next page list result.

prev The previous page list result.

replace Updates or replaces a link.

search Searches a link's resources.

self The link's identifier pointing to a resource.

up A parent resource based on the architectural hierarchy.

https://tools.ietf.org/html/rfc5988#section-4

URI
The example below shows the resource URL format used by Fortellis API endpoints:

https://api.fortellis.io/service/v1/appointments/75d566bbba1b

The following table defines sample URI paths:

Path Description

service The namespace resource.

v1 The API version.

appointments The domain resource.

75d566bbba1b The resource ID.

Sub-Resources

The sub-resource name defines the relationship between itself and its parent resource.
If cardinality is 1:1 then no additional information is required. Only two levels of
sub-resources are supported. See the examples below:

GET

https://api.fortellis.io/service/v1/appointments/75d566bbba1b/it

ems

The above GET returns all of the associated items of appointment 75d566bbba1b.

GET

https://api.fortellis.io/service/v1/repair-orders/ABCD1234/parts

The above GET returns all of the associated parts of the repair order and details. The
part ID is not required.

When part IDs are required the following path is used:

/service/v1/parts/ABCD1234

Resource Identifiers

The Fortellis APIs conform to the following conventions:

1. Resource identifiers are owned by a resource domain.
2. Database sequence numbers are not permitted to be used as a resource

identifier.
3. We follow the RFC 4122 standards for universal unique identifiers.
4. Sub-resource IDs are scoped within the parent resource to support security and

data access.
5. Enumeration values (including string representations) are used as sub-resource

IDs.
6. No two resource identifiers may be next to one another in a single resource path.
7. Resource identifiers use Resource Identifier Characters or ASCII characters.
8. UTF-8 characters are not permitted in resources identifiers unless they're

encoded.
9. Query parameters and resource identifiers must use the URI-percent-encoding

RFC 3986 standard for syntax (except URI unreserved).

Query Parameters

The Fortellis APIs follow the RFC 3986 query parameter standards. Below are summary
points of these conventions:

● Query parameters are used to restrict the resource collection and to search or

filter specific criteria.
● Pagination parameters use the pagination syntax.
● Default sort order is undefined and non-deterministic. Explicit query parameter

sort orders use the following syntax: {fieldName}|{asc|desc}.
● Single-source query parameters are not supported.
● When the need arises for highly cacheable query parameters, avoid using POST

in your request body. GET is preferred.
● Query parameters are not ideal when making POST operations.

https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986

